1. Eğik Kare Prizma

Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir.
Prizmanın yanal ayrıtlarına l dersek,
Prizmanın yüksekliği h =l .sin a olur.
Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır.
Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise,
a'=a.sin a kadardır.
Buradan;


Dik Kesit Alanı = Taban Alanı x Sin a
Dik kesit çevresi = 2a +2a.sin a

Eğik prizmaların yanal alanlarının toplamı

Yanal alan= Dik kesit çevresi x Yanal Ayrıt
bağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur.
Hacim = Taban Alanı x YükseklikAyrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir.
Hacim = Dik Kesit Alanı x Yanal Ayrıt



2. Eğik Silindir
|AA'| = |BB'| = l
Yanal ayrıtı l olan ve taban düzlemi ile a açısı yapan eğik silindirde yükseklik,
h=l.sin a
Dik Kesit Alanı=Taban Alanı x Sin a

Eğik silindirin yan yüz
alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Bütün eğik prizmalarda olduğu gibi eğik silindir
de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir.
Hacim = Taban Alanı x Yükseklik
Hacim = Dik Kesit Alanı x Yanal Ayrıt
Yanal Alan = Dik Kesit çevresi x Yanal Ayrıt

Etiketler:
Beğeniler: 0
Favoriler: 0
İzlenmeler: 6147
favori
like
share
ceh Tarih: 02.03.2009 17:58
95+6+5