Temel Elektronik Devre Elemanları

Son güncelleme: 24.05.2009 19:23
  • Temel Elektronik Devre Elemanları - Maket Devre Elemanları

    Diyotlar

    noimage

    Diyot tek yöne elektrik akimini ileten bir devre elemanidir. Diyotun P kutbuna "Anot" N kutbuna da "Katot" adi verilir. Genellikle AC akimi DC akima dönüstürmek için Dogrultmaç devrelerinde kullanilir. Diyot N tipi madde ile P tipi maddenin birlesiminden olusur. Bu maddeler ilk birlestirildiginde P tipi maddedeki oyuklarla N tipi maddedeki elektronlar iki maddenin birlesim noktasinda bulusarak birbirlerini nötrlerler ve burada "Nötr" bir bölge olusturular. Yandaki sekilde Nötr bölgeyi görebilirsiniz. Bu nötr bölge kalan diger elektron ve oyuklarin birlesmesine engel olur. Yandaki sekilde diyotun sembolünü görebilirsiniz. Simdide diyotun dogru ve ters polarmalara karsi tepkilerini inceleyelim.


    Doğru Polerma

    noimage

    Anot ucuna güç kaynaginin pozitif (+) kutbu katot ucunada güç kaynaginin negatif (-) kutbu baglandiginda P tipi maddedeki oyuklar güç kaynaginin pozitif (+) kutbu tarafindan N tipi maddedeki elektronlar da güç kaynaginin negatif (-) kutbu tarafindan itilirler. Bu sayede aradaki nötr bölge yikilmis olur ve kaynagin negatif (-) kutbunda pozitif (+) kutbuna dogru bir elektron akisi baslar. Yani diyot iletime geçmistir. Fakat diyot nötr bölümü asmak için diyot üzerinde 0.6 Voltluk bir gerilim düsümü meydana gelir. Bu gerilim düsümü Silisyumlu diyotlarda 0.6 Volt Germanyum diyotlarda ise 0.2 Volttur. Bu gerilime diyotun "Esik Gerilimi" adi verilir. Birde diyot üzerinde fazla akim geçirildiginde diyot zarar görüp bozulabilir. Diyot üzerinden geçen akimin düsürülmesi için devreye birdr seri direnç baglanmistir. Ideal diyotta bu gerilim düsümü ve sizinti akimi yoktur.


    Ters Polerma

    noimage

    Diyotun katot ucuna güg kaynaginin pozitif (+) kutbu anot ucuna da güç kaynaginin negatif (-) kutbu baglandiginda ise N tipi maddedeki elektronlar güç kaynaginin negatif (-) kutbu tarafindan P tipi maddedeki oyuklarda güç kaynaginin pozitif (+) kutbu tarafinda çekilirler. Bu durumda ortadaki nötr bölge genisler yani diyot yalitima geçmis olur. Fakat Azinlik Tasiyicilar bölümündede anlattigimiz gibi diyota ters gerilim uydulandiginda diyot yalitimda iken çok küçük derecede bir akim geçer. Bunada "Sizinti Akimi" adi verilir. Bu istenmeyen bir durumdur.


    Zener Diyot

    noimage

    Zener diyotlar normal diyotlarin delinme gerilimi noktansindan faydalanilarak yapilmistir. Zener diyot dogru polarmada normal diyot gibi çalisir. Ters polarmada ise zener diyota uygulanan gerilim "Zener Voltaji" 'nin altinda ise zener yalitima geçer. Fakat bu voltajin üzerine çikildiginda zener diyotun üzerine düsen gerilim zener voltajinda sabit kalir. Üzerinden geçen akim degisken olabilir. Zenerden arta kalan gerilim ise zenere seri bagli olan direncin üzerine düser. Üretici firmalar 2 volttan 200 volt degerine kadar zener diyot üretirler. Zener diyotlar voltaji belli bir degerde sabit tutmak için yani regüle devrelerinde kullanilir. Yan tarafta zener diyotun simgesi dis görünüsü ve ters polarmaya karsi tepkisi görülmektedir.


    Tünel Diyot

    noimage

    Saf silisyum ve Germanyum maddelerine dafazla katki maddesi katilarak Tunel diyotlar imal edilmektedir. Tunel diyotlar ters polarma altinda çalisirlar. Üzerine uygulanan gerilim belli bir seviyeye ulasana kadar akim seviyesi artarak ilerler. Gerilim belli bir seviyeye ulastiktan sonrada üzerinden geçen akimda düsüs görülür. Tunel diyotlar bu düsüs gösterdigi bölge içinde kullanilirlar. Tunel diyotlar yüksek frekansli devrelerde ve osilatörlerde kullanilir. Yan tarafta tunel diyotun sembolü ve dis görünüsü görülmektedir.


    Varikap Diyot

    noimage

    Bu devre elemanini size anlatabilmem için ilk önce ön bilgi olarak size kondansatörden bahsetmem gerekecek. Kondansatörün mantigi iki iletken arasinda bir yalitkan olmasidir. Ve bu kondansatördeki iletkenlerin arasindaki uzaklik artirilarak ve azaltilarak kapasitesi degistirilen kondasatörler mevcuttur. Fakat bunlarin bir dezanataji var ki bu da çok maliyetli olmasi çok yer kaplamasi ve elle kumanda edilmek zorunda olmasi. Bu kondansatör türüne "Variable Kondansatör" diyoruz. Simdi varible kondansatörlere her konuda üstün gelen bir rakip olan "Varikap Diyotu" anlatacagim. Varikap diyot uclarina verilen gerilime oranla kapasite degistiren bir ayarli kondansatördür ve ters polarma altinda çalisir. Boyut ve maliyet olarak variable kondansatörlerden çok çok kullanislidir. Diyot konusunda gördügünüz gibi diyot da kondansatör gibi iki yari iletken maddenin arasinda nötr bölge yani yalitkandan olusur.Yan tarafta görüldügü gibi üzerine uygulanan ters polarma gerilimi arttigi taktirde aradaki nötr bölge genisliler. Bu da iki yari iletkenin aralarindaki mesafeyi arttirir. Böylece diyotun kapasitesi düser. Gerilim azaltildiginda ise tam tersi olarak nötr bölge daralir ve kapasite artar. Bu eleman televizyon ve radyolarin otomatik aramalarinda kullanilir.


    Sotki (Schottky) Diyot

    noimage

    Led isik yayan bir diyot türüdür. Lede dogru polarma uygulandiginda p maddesindeki oyuklarla n maddesindeki elektronlar birlesim yüzeyinde nötrlesirler. Bu birlesme aninda ortaya çikan enerji isik enerjisidir. Bu isigin gözle görülebilmesi için ise p ve n maddelerinin birlesim yüzeyine "Galyum Arsenid" maddesi katilmistir. Ledlerin yesil kirmizi sari ve mavi olmak üzere 4 çesit renk seçenegi vardir.


    Led Diyot

    noimage

    Led isik yayan bir diyot türüdür. Lede dogru polarma uygulandiginda p maddesindeki oyuklarla n maddesindeki elektronlar birlesim yüzeyinde nötrlesirler. Bu birlesme aninda ortaya çikan enerji isik enerjisidir. Bu isigin gözle görülebilmesi için ise p ve n maddelerinin birlesim yüzeyine "Galyum Arsenid" maddesi katilmistir. Ledlerin yesil kirmizi sari ve mavi olmak üzere 4 çesit renk seçenegi vardir.


    Infraruj Led

    noimage

    Infraruj led normal ledin birlesim yüzeyine galyum arsenid maddesi katilmamis halidir. Yani görünmez (mor ötesi), infraruj ledler televizyon veya müzik setlerinin kumandalarinda kumandanin göndedigi frekansi televizyon veya müzik setine iletmek için kullanilir. Televizyon veya müzik setinde ise bu frekansi alan devre elemanina "Foto Diyot" denir. Infraruj led ile normal ledin sembolleri aynidir.


    Foto Diyot

    noimage

    Foto diyotlar ters polarma altinda kullanilirlar. Dogru polarmada normal diyotlar gibi iletken ters polarmada ise n ve p maddelerinin birlesim yüzeyine isik düsene kadar yalitkandir. Birlesim yüzeyine isik düstügünde ise birlesim yüzeyindeki elektron ve oyuklar açiga çikar ve bu sekilde foto diyot üzerinden akim geçmeye baslar. Bu akimin boyutu yaklasik 20 mikroamper civarindadir. Foto diyot televizyon veya müzik setlerinin kumanda alicilarinda kullanilir.

    Optokuplör

    Optokuplorler içinde bir adet foto diyot ve bir adet de infaruj led barindiran bir elektronik devre elemanidir. Bu infaruj led ve foto diyotlar optokuplörün içerisine birbirini görecek sekilde yerlestrilmislerdir. Infraruj ledin uclarina verilen sinyal aynen foto diyotun uclarindan alinir. Fakat foto diyotun uçlarindaki sinyal çok çok düsük oldugu için bir yükselteçle yükseltilmesi gerekir. Bu devre elemaninin kullanim amaci ise bir devreden diger bir devreye elektriksel bir baglanti olmaksizin bilgi iletmektir. Aradaki baglanti isiksal bir baglantidir.


    Transistör

    Tansistörler PNP ve NPN transistörler olarak iki türe ayrilirlar. NPN transistörler N P ve N yari iletken maddelerin birlesmesinden PNP transistörler ise P N ve P yari iletken maddelerinin birlesmesinden meydana gelmislerdir. Ortada kalan yari iletken madde digerlerine göre çok incedir. Transistörde her yali iletken maddeden disari bir uç çikartilmistir. Bu uçlara "Kollektör Beyz ve Emiter" isimlerini veriyoruz. Transistör beyz ve emiter uçlarina verilen küçük çaptaki akimlarla kollektör ile emiter uçlari arasindan geçen akimlari kontrol ederler. Beyz ile emiter arasina verilen akimin yaklasik %1 'i beyz üzerinden geri kalani ise kollektör üzerinden devresini tamamlar. Transistörler genel olarak yükseltme islemi yaparlar. Transistörlerin katalog degerlerinde bu yükseltme kat sayilari bulunmaktadir. Bu yükseltme katsayisinin birimi ise "Beta" 'dir. Simdide NPN ve PNP tipi transistörleri ayri ayri inceleyelim.


    NPN Tipi Transistör

    noimage

    NPN tipi transistörler N P ve N tipi yari iletkenlerinin birlesmesinden meydana gelmistir. Sekilde görüldügü gibi 1 nolu kaynagin (-) kutbundaki elektronlar emiterdeki elektronlari beyze dogru iter ve bu elektronlarin yakalasik %1 'i beyz üzerinden 1 nolu kaynagin (+) kutbuna geri kalani ise kollektör üzerinden 2 nolu kaynagin (+) kutbuna dogru hareket ederler. Beyz ile emiter arasindan dolasan akim çok küçük kollektör ile emiter arasindan dolasan akim ise büyüktür. Yan tarafta NPN tipi transistörün sembolü ve iç yapisi görülmektedir.


    PNP Tipi Transistör

    noimage

    PNP tipi transistörler P N ve P tipi yari iletkenlerinin birlesmesinden meydana gelmistir. Sekilde görüldügü gibi 1 nolu kaynagin (+) kutbundaki oyuklar emiterdeki oyuklari beyze dogru iter ve bu oyuklarin yakalasik %1 'i beyz üzerinden 1 nolu kaynagin (-) kutbuna geri kalani ise kollektör üzerinden 2 nolu kaynagin (-) kutbuna dogru hareket ederler. Beyz ile emiter arasindan dolasan akim çok küçük kollektör ile emiter arasindan dolasan akim ise büyüktür.Yan tarafta PNP tipi transistörün sembolü ve iç yapisi görülmektedir...

    Foto Transistör

    noimage

    Foto transistörün normal transistörden tek farki kollektör ile emiter arasindan geçen akimi beyz ile degilde beyz ile kollektörün birlesim yüzeyine düsen mor ötesi isikla kontrol ediliyor olmasidir. Foto transistör devrede genelde beyz ucu bosta olrak kullanilir. Bu durumda üzerine isik düstügünde tem iletimde düsmediginde ise tam yalitimdadir. Foto transistörün kazanci beta kadar oldugu için foto diyotlardan daha avantajlidir. Yan tarafta foto transistörün sembolü görülmektedir.

    Tristör

    noimage

    Tristör mantik olarak yandaki sekildeki gibi iki transistörün birbirine baglandigi gibidir. Tristörün anot katot ve gate olmak üzere üç ucu bulunmaktadir. Gate ucu tetikleme ucudur. Yani anot ile katot üzerinde bir gerilim varken (Anot (+) katot (-) olmak sarti ile) gate ile katot uclari arasina bir anlik (Gate (+) katot (-) olmak sarti ile) akim uygulanip çekildiginde tristörün anot ile katot uçlari arasi iletime geçer. Anot ile katot arasindaki gerilim "Tutma Gerilimi" 'nin altina düsmedigi sürece tristör iletimde kalir. Tristörü yalitima sokmak için anot ile katot arasindaki akim kesilir veya anat ile katot uclari bir anlik kisa devre yapilir. Veya da gate ile katot arasina ters polarma uygulanir. Yani gate ucuna negatif gerilim uygulanir.


    Diyak

    noimage

    Diyak çift yönde de ayni görevi gören bir zener diyot gibi çalisir. Diyakin üzerine uygulanan gerilim diyak geriliminin altinda iken diyak yalitimdadir. Üzerinden sadece sizinti akimi geçer. Üzerine ukgulanan gerilim diyak geriliminin üstüne çiktiginda ise siyak iletime geçer. Fakat iletime geçer geçmez diyakin uçlarindaki gerilimde bir düsüs görülür. Bu düsüs degeri diyak geriliminin yaklasik %20 'si kadardir. Diyakin üzerine uygulanan gerilim diyak geriliminin altina da düsse diyak yine de iletimde kalir. Fakat diyaka uygulanan gerilim düsüs anindan sonraki gerilim seviyesinin altina düsürüldügünde diyak yalitima geçer. Diyak iki yöndeki uygulanan polarmalarda da ayni tepkiyi verecektir. Diyakin bu özelliklerinin olma sebebi alternatif akimda kullanilabilmesidir.


    JFet Transistör

    Jfet transistörler normal transistörlerle ayni mantikta çalisirlar. Üç adet uca sahiptir. Bunlar Kapi (G)(normal transistörün beyzi) oyuk (D)(normal transistörün kollektörü) ve kaynak (S) 'dir. Normal transistörle jfet transistör arasindaki tek fark normal transistörün kollektör emiter arasindaki akimin beyzinden verilen akimla kontrol edilmesi jfet transistörün ise geytinden verilen gerilimle kontrol edilmesidir. Yani jfetler gate ucundan hiç bir akim çekmezler. Jfet'in en önemli özelligide budur. Bu özellik içerisinde çok sayida transistör bulunduran entegrelerde isinma ve akim yönünden büyük bir avantaj saglar. Normal transistörlerin NPN ve PNP çesitleri oldugu gibi jfet transistörlerinde N kanal ve P kanal olarak çesitleri bulunmaktadir. Fakat genel olarak en çok N kanal jfetler kullanilir. Asagida jfetin iç yapisi ve sembolü görülmektedir.


    N Kanal JFet Transistör

    noimage

    Grafikte görüldügü gibi n kanal jfet transistörler iki adet P ve bir adette N maddesinin birlesiminden meydana gelmistir. Fetin gate ucuna uygulanan gerilim ile D ve S uclari arasindaki direnç degeri kontrol edilir. Gate ucu 0V tutuldugunda yani S ucuna birlestirildiginde P ve N maddeleri arasindaki nötr bölge genislemeye baslar. Bu durumda D ve S uclari arasindan yüksek bir akim akmaktadir. D ve S uclari arasina uygulanan gerilim seviyesi arttirildigi taktirde ise bu nötr bölge daha da genislemeye baslar ve akim doyum degerinde sabit kalir. Gate ucuna eksi degerde bir gerilim uygulanmasi durumunda ise nötr bölge daralir. Akim seviyesi de gate ucuna uygulanan gerilim seviyesine bagli olarak düsmeye baslar. Bu sayede D ve S uçlarindaki direnç degeri yükselir.

    P Kanal JFet Transistör

    noimage

    P kanal fetlerin çalisma sistemide N kanal fetlerle aynidir. Tek farki polarizasyon yönünün ve P N maddelerinin yerlerinin ters olmasidir. Yani gate ucuna pozitif yönde polarizasyon verdigimizde D ve S uclari arasindaki direnç artar akim düser. Gate ucu 0V iken ise akim doyumdadir...

    Dirençler

    noimage

    Direncin kelime anlami birseye karsi gösterilen zorluktur. Devre elemani olan dirençte devrede akima karsi bir zorluk göstererek akim sinirlamasi yapar. Direncin birimi "Ohm" 'dur. 1000 ohm = 1 Kilo ohm 1000000 ohm = 1 Mega ohm ve 1000000000 ohm = 1 Giga ohm. Direncin degeri üzerine renk kodlari ile yazilmistir. Yan tarafta görülen direncin renkleriri soldan baslayarak sari mor kirmizi ve altindir. Soldan 1. renk 1. sayiyi 2. renk 2. sayiyi 3. renk çarpan sayiyi ve 4. renkte toleransi gösterir. Tablodan bakildiginda sari 4'e mor 7'e ve kirmizida çarpan olarak 10 üzeri 2'ye esittir. Bunlar hesaplandiginda ilk iki sayi yanyana konur ve üçüncü ile çarpilir. Tolerans direncin degerindeki oynama alanidir. Mesela yandaki direncin toleransi %5 ve direncin degeri de 4.7 Kohm'dur. Tolerans bu direncin degerinin 4.7 Kohm'dan %5 fazla veya eksik olabilecegini belirtir. Birde 5 renkli dirençler vardir. Bunlarda ilk üç renk sayi 4. renk çarpan 5. renk ise toleranstir. Dirençler normalde karbondan üretilirler fakat yüksek akim tasimasi gereken dirençler telden imal edilirler. Ayrica dirençler sabit ve ayarli dirençler olmak üzere ikiye ayrilirlar. Ayarli dirençlerden "Potansiyometre" sürekli ayar yapilan yerlerde "Trimpot" ise nadir ayar yapilan yerlerde kullanilirlar.


    Direnç Baglanti Türleri

    Seri baglanti

    noimage

    Üst taraftaki resimde dört adet direncin birbirine seri baglanmis durumu görülmektedir. A ve B uclarindaki toplam direnç degerinin heaplama formülü RToplam = R1 + R2 + R3 + R4 seklindedir. Yani 100 ohm + 330 ohm + 10 Kohm + 2.2 Kohm = 12.430 Kohm 'a buda 12430 ohm'a esittir.

    Paralel Bağlantı

    noimage

    Paralel baglantida ise formül 1 / RToplam = ( 1 / R1 ) + ( 1 / R2 ) + ( 1 / R3 ) + ( 1 / R4 ) seklindedir. Fakat islemler yapilmadan önce Tüm degerler ayni yani ohm Kohm veya Mohm cinsine dönüstürülmelidir. 10 Kohm = 10000 ohm 2.2 Kohm = 2200 ohm. Simdide hesaplamayi yapalim. 1 / RToplam = ( 1 / 100 ohm ) + ( 1 / 330 ohm ) + ( 1 / 10000 ohm ) + ( 1 / 2200 ohm ) bu esitlige göre 1 / RToplam = ( 0.01 ) + ( 0.003 ) + ( 0. 0001) + ( 0.00045) => 1 / RToplam = 0.01355 yine bu esitlige göre RToplam = 1 / 0.01355 bu da 73.8 ohm'a esittir.


    Direnç Çeşitleri


    Potansiyometre

    noimage

    Potansiyometre devamli ayar yapilmasi için üretilmis bir ayali direnç türüdür. radyo ve teyiplerde ses yüksekligini ayarlamak için kullanilir. Üç bacaklidir. 1 ve 3 nolu uçlar arasinda sabit bir direnç vardir. Ortadaki uç ise 1 nolu uç ile 3 nolu uç arasinda hareket eder. 1 nolu ucala arasindaki direnç azaldikça 3 nolu uç arasindaki direnç artar.

    Trimpot

    noimage

    Trimpot ise devrenin içinde kalir ve sabit kalmasi gereken ayarlar için kullanilir. Mantigi potansiyometre ile aynidir.

    Foto Direnç(LDR)

    noimage

    Foto direnç üzerine düsen isik siddetiyle ters orantili olarak isik siddeti arttiginda direnci düsen isik siddeti azaldiginda ise direnci artan bir devre elemanidir. Foto direnç AC ve DC akimda ayni özellikleri gösterir. Üst tarafta foto direncin sembolü görülmektedir.

    NTC

    Ntc direnci isiyla kontrol edilen bir direnç türüdür. Ntc isila ters orantili olarak direnç degistirir. Yani isi arttikca ntcnin direnci azalir. Isi azaldikça da ntcnin direnci artar. Üst tarafta NTC'nin sembolü görülmektedir.

    PTC

    noimage

    Ptc ise ntcnin tam tersidir. Isiyla dogru orantili olarak direnci degisir. Yani isi artikça direnci artar isi azaldikça da direnci azalir. Üst tarafta PTC'nin sembolü görülmektedir

    Kondansatör

    Kondansatör mantigi iki iletken arasina bir yalitkandir. Kondansatörler içerisinde elektrik depolamaya yarayan devre elemanlaridir. Kondansatöre DC akim uygulandiginda kondansatör dolana kadar devreden bir akim aktigi için iletimde kondansatör dolduktan sonrada yalitimdadir. Devreden sizinti akimi haricinde herhangi bir akim geçmez. AC akim uygulandiginda ise akimin yönü devamli degistigi için kondansatör devamli iletimdedir. Kondansatörün birimi "Farat" 'tir ve "F" ile gösterilir. Faratin altbirimleri Mikro farat (uF) Nano farat (nF) ve Piko farattir (pF). 1 F = 1000000 uF 1 uF = 1000 nF 1 nF = 1000 pF. Simdide kondansatörlerin seri ve paralel baglanti sekillerini inceleyelim.


    Kondansatör Baglanti Sekilleri

    Seri baglanti

    noimage

    Kondansatörlerin seri baglanti hesaplamalari direncin paralel baglanti hesaplariyla aynidir. Yanda görüldügü gibi A ve B noktalari arasindaki toplam kapasite
    1 / CToplam = ( 1 / C1 ) + ( 1 / C2 ) + ( 1 / C3 ) seklinde hesaplanir.
    1 / CToplam = ( 1 / 10 uF ) + ( 1 / 22 uF ) + ( 1 / 100uF ) burdan da
    1 / CToplam = 01 + 0045 + 001
    1 / CToplam = 0155
    CToplam = 1 / 0155
    CToplam = 6.45 uF eder.
    A ve B arasindaki elektrik ise
    VToplam = V1 + V2 + V3 seklinde hesaplanir.
    Bu elektrik kondansatörlerin içinde depolanmis olan elektriktir

    Paralel baglanti

    Kondansatörlerin paralel baglanti hesaplamalari direncin seri baglanti hesaplariyla aynidir.
    CToplam = C1 + C2 + C3 hesapladigimizda
    CToplam = 10 uF+ 22 uF + 100 uF
    CToplam = 132 uF eder.
    A ve B noktalari arasindaki elektrik ise
    VToplam = V1 = V2 = V3 seklindedir.
    Yani tüm kondansatörlerin gerilimleride esittir.
#24.05.2009 19:23 0 0 0