Kümeler - Boş Küme - Alt Küme - Alt Kümenin Özelikleri

[COLOR="yellowgreen"]A. TANIM
Küme, nesnelerin iyi tanımlanmış listesidir.

Kümeler genellikle A, B, C gibi büyük harflerle gösterilir.

Kümeyi oluşturan ögelere, kümenin elemanı denir. a elemanı A kümesine ait ise, a Î A biçiminde yazılır. “a, A kümesinin elemanıdır.” diye okunur. b elemanı A kümesine ait değilse, b Ï A biçiminde yazılır. “b, A kümesinin elemanı değildir.” diye okunur.

Kümede, aynı eleman bir kez yazılır.

Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez.

A kümesinin eleman sayısı s(A) ya da n(A) ile gösterilir.


[COLOR="yellowgreen"]B. KÜMELERİN GÖSTERİLİŞİ

Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.

[COLOR="yellowgreen"]1. Liste Yöntemi

Kümenin elemanları { } sembolü içine, her bir elemanın arasına virgül konularak yazılır.

A = {a, b, {a, b, c}} ise, s(A) = 3 tür.


[COLOR="yellowgreen"]2. Ortak Özelik Yöntemi

Kümenin elemanlarını, daha somut ya da daha kolay algılanır biçimde gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir.

A = {x : (x in özeliği)}

Burada “x :” ifadesi “öyle x lerden oluşur ki” diye okunur.

Bu ifade “x |” biçiminde de yazılabilir.



[COLOR="yellowgreen"]3. Şema Yöntemi

Küme, kapalı bir eğri içinde her eleman bir nokta ile gösterilip noktanın yanına elemanın adı yazılarak gösterilir.

Bu gösterime Venn Şeması ile gösterim denir.


[COLOR="yellowgreen"]C. EŞİT KÜME, DENK KÜME

Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.

A kümesi B kümesine eşit ise A = B,

C kümesi D kümesine denk ise C º D

biçiminde gösterilir.

Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.

[COLOR="yellowgreen"]D. BOŞ KÜME

Hiç bir elemanı olmayan kümeye boş küme denir.

Boş küme { } ya da Æ sembolleri ile gösterilir.

{Æ} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.


[COLOR="yellowgreen"]E. ALT KÜME - ÖZALT KÜME

1. Alt Küme

A kümesinin her elemanı, B kümesinin de elemanı ise A ya B nin alt kümesi denir.

A kümesi B kümesinin alt kümesi ise A Ì B biçiminde gösterilir.

A kümesi B kümesinin alt kümesi ise B kümesi A kümesini kapsıyor denir. B É A biçiminde gösterilir.

C kümesi D kümesinin alt kümesi değilse C Ë D biçiminde gösterilir.


[COLOR="magenta"]2. Özalt Küme

Bir kümenin, kendisinden farklı bütün alt kümelerine o kümenin özalt kümeleri denir.


[COLOR="magenta"]3. Alt Kümenin Özelikleri

i) Her küme kendisinin alt kümesidir.

A Ì A

ii) Boş küme her kümenin alt kümesidir.

Æ Ì A

iii) (A Ì B ve B Ì A) Û A = B dir.

ıv) (A Ì B ve B Ì C) ise, A Ì C dir.

v) n elemanlı bir kümenin alt kümelerinin sayısı 2n ve özalt kümelerinin sayısı 2n – 1 dir.



Ü
Elemanları arasında a bulunan n elemanlı bir kümenin,

• alt kümelerinden 2n–1 tanesinde a bulunmaz.

• alt kümelerinden 2n–1 tanesinde a bulunur.


n elemanlı bir kümenin r tane (n ³ r) elemanlı alt kümelerinin sayısı,

dir


n elemanlı bir kümenin 0 elemanlı (boş küme) ve n elemanlı alt kümeleri sayısı 1 dir.


n elemanlı bir kümenin 1 elemanlı ve n – 1 elemanlı alt kümeleri sayısı n dir.



n elemanlı bir kümenin; x elemanlı alt kümeleri sayısı, y elemanlı alt kümeleri sayısına eşit ise, x = y veya n = x + y dir.


n elemanlı bir kümenin bütün alt kümeleri sayısı 2n olduğu için,


[COLOR="magenta"]F. KÜMELERLE YAPILAN İŞLEMLER

[COLOR="magenta"]1. Kümelerin Birleşimi

A nın elemanlarından veya B nin elemanlarından oluşan kümeye bu iki kümenin birleşim kümesi denir ve A È B biçiminde gösterilir.

A È B = {x : x Î A veya x Î B} dir.


F Ì E ise, E È F = E dir.

E É F ise, E È F = E dir.


2. Birleşim İşleminin Özelikleri

a) A È Æ = A

b) A È A = A

c) A È B = B È A

d) A È (B È C) = (A È B) È C

e) A Ì B ise, A È B = B

f) A È B = Æ ise, (A = Æ ve B = Æ) dir.


[COLOR="magenta"]3. Kümelerin Kesişimi

A ve B kümesinin ortak elemanlarından oluşan kümeye A ile B nin kesişim kümesi denir ve A Ç B biçiminde gösterilir.

A Ç B = {x : x Î A ve x Î B} dir.

F Ì E ise, E Ç F = F dir.

E É F ise, E Ç F = F dir.


[COLOR="magenta"]4. Kesişim İşleminin Özelikleri

a) A Ç Æ = Æ

b) A Ç A = A

c) A Ç B = B Ç A

d) (A Ç B) Ç C = A Ç (B Ç C)

e) A Ç (B È C) = (A Ç B) È (A Ç C)

f) A È (B Ç C) = (A È B) Ç (A È C)



[COLOR="magenta"]G. EVRENSEL KÜME

Üzerinde işlem yapılan, bütün kümeleri kapsayan kümeye, evrensel küme denir. Evrensel küme genellikle E ile gösterilir.


E Ç A = A dır.

E È A = E dir.

A Ì E dir.

B Ì E dir.




[COLOR="magenta"]H. BİR KÜMENİN TÜMLEYENİ

Evrensel kümenin elemanı olup, A kümesinin elemanı olmayan elemanlardan oluşan kümeye A nın tümleyeni denir ve ya da A' ile gösterilir.

A' = {x : x Î E ve x Ï A, A Ì E} dir.

Tümleyenin Özelikleri

Bir kümenin tümleyeninin tümleyeni kendisidir.
Buna göre, (A')' = A olur.

Evrensel kümenin tümleyeni boş kümedir. Buna göre, E' = Æ olur.

Boş kümenin tümleyeni evrensel kümedir. Buna göre, Æ' = E olur.

Bir kümenin eleman sayısı ile o kümenin tümleyeninin eleman sayısı toplamı evrensel kümenin eleman sayısına eşittir. Buna göre,

s(A) + s(A') = s(E) olur.

A Ì B ise, B' Ì A' dir.

B' Ì A' ise, A Ì B dir.

E, evrensel küme olmak üzere, A È A' = E dir.

A Ç A' = Æ dir.

(A È B)' = A' Ç B'

(A Ç B)' = A' È B'

E, evrensel küme olmak üzere, E È A' = E dir.

E, evrensel küme olmak üzere, E Ç A' = A' dir.

[COLOR="magenta"]I. KUVVET KÜMESİ

Bir kümenin bütün alt kümelerin kümesine kuvvet kümesi denir. Kuvvet kümesi P(A) ile gösterilir.

s(A) = n ise, s(P(A)) = 2n dir.



[COLOR="magenta"]J. İKİ KÜMENİN FARKI

A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A \ B biçiminde gösterilir.

A – B = {x : x Î A ve x Ï B} dir.


Farkla İlgili Özelikler

A, B, C kümeleri E evrensel kümesinin alt kümeleri olmak üzere,

i) E – A = A'

ii) A – B = A Ç B'

iii) (A – B)' = A' È B dir.

iv) (A – B) È (B – A) = A D B (Simetrik Fark)


[COLOR="yellow"]
K. ELEMAN SAYISI

A, B, C herhangi birer küme olmak üzere,

s(A È B) = s(A) + s(B) – s(A Ç B)

s(A È B È C) = s(A) + s(B) + s(C) – s(A Ç B) – s(A Ç C)

– s(B Ç C) + s(A Ç B Ç C)

s(A È B) = s(A – B) + s(A Ç B) + s(B – A)

a + b + c + d tane öğrencinin bulunduğu bir sınıfta voleybol oynayan öğrencilerin sayısı s(V) = b + c, tenis oynayan öğrencilerin sayısı s(T) = a + b, voleybol ve tenis oynayan öğrencilerin sayısı s(T Ç V) = b olsun.


Şemadaki a, b, c, d bulundukları bölgelerin (kümelerin) eleman sayılarını göstermektedir.


Tenis veya voleybol oynayanların sayısı:

s(T È V) = a + b + c

Tenis ya da voleybol oynayanların sayısı:

s(T – V) + s(V – T) = a + c

Sadece tenis oynayanların sayısı:

s(T – V) = a

Tenis oynamayanların sayısı:

s(T') = c + d

Bu iki oyundan en az birini oynayanların sayısı:

s(T È V) = a + b + c

Bu iki oyundan en çok birini oynayanların sayısı:

Bu iki oyundan hiç birini oynamayanların sayısı:

Bir apartmanda A gazetesini alan herkes B gazetesini almaktadır. B gazetesini alanlardan C gazetesini alan yoktur.

Apartmandakilerin kümesi K, A gazetesini alanların kümesi A, B gazetesini alanların kümesi B, C gazetesini alanların kümesi C olmak üzere, yandaki şemada x, y, z, t bulundukları bölgelerin eleman sayılarını göstermektedir.

Etiketler:
Beğeniler: 0
Favoriler: 0
İzlenmeler: 658
favori
like
share