Taylor Teorami - Taylor Denklermi


Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise (a = 0), Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

Her dereceden türevli, gerçel ya da karmaşık bir f(x) fonksiyonunun a gerçel ya da karmaşık bir sayı olmak üzere (a − r,a + r) aralığındaki Taylor serisi şu şekilde tanımlanmıştır:



Daha düzenli bir gösterim olan Sigma gösterimiyle ise şu şekilde yazılır:


Burada n!, n faktöriyeli; ƒ (n)(a) ise f fonksiyonunun n. dereceden türevinin a noktasındaki değerini belirtmektedir. f fonksiyonunun sıfırıncı dereceden türevi f' in kendisiyle tanımlanmıştır ve (x − a)0 ve 0!, 1'e eşit olarak kabul edilmiştir.

Maclaurin serisi
a=0 özel durumunda seri, Maclaurin serisi olarak adlandırılır:


Örnekler

Herhangi bir çokterimlinin Maclaurin serisi, kendisidir.
x-1 için Maclaurin serisi,
geometrik serisidir.
x-1 fonksiyonunun a=1 değerindeki Taylor serisi de,
dir.
Yukarıdaki Maclaurin serisinin integralini alarak −ln(1 − x) fonksiyonunun Maclaurin serisini buluruz: (burada ln doğal logaritmayı ifade eder)

Ve bu seriye ilişkin ln(x) fonksiyonunun a=1 değerindeki Taylor serisi ise,
dir.
a = 0 noktasında ex üstel fonksiyonu için Taylor serisi,
dir.
ex'in x'e göre türevi yine ex 'e ve e0 de 1'e eşit olduğundan yukarıdaki açılım sadeleşir. Bu sadeleşme sonucunda da sonsuz toplamdaki her terimin payında (x − 0)n terimi, paydasındaysa n! terimi kalır.

Etiketler:
Beğeniler: 0
Favoriler: 0
İzlenmeler: 1095
favori
like
share